Metalloporphyrin polymer with temporally agile, broadband nonlinear absorption for optical pulse suppression in the near infrar
نویسندگان
چکیده
A lead bis(ethynyl)porphyrin polymer possesses strong nonlinear absorption with unprecedented spectral/temporal coverage as a result of broad, overlapping two-photon and excited-state absorption bands with favorable excited-state dynamics. Consequently, this material exhibits effective optical limiting over a range of about 500 nm in the near infrared (ca. 1050 – 1600 nm) and for laser pulsewidths spanning from 75 fs to 40 ns. Introduction of the material in a waveguide device geometry results in a strong optical limiting response. ©2009 Optical Society of America OCIS codes: (190.0190) Nonlinear optics; (190.4710) Optical nonlinearities in organic materials; (190.4180) Multiphoton processes; (190.7110) Ultrafast nonlinear optics; (070.4340) Nonlinear optical signal processing; (130.2790) Guided waves References and Links 1. E. W. Van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha, and T. F. Boggess, "2 photon-absorption, nonlinear refraction, and optical limiting in semiconductors," Opt. Eng. 24, 613-623 (1985). 2. L. W. Tutt and A. Kost, "optical limiting performance of C-60 and C-70 solutions," Nature 356, 225-226 (1992). 3. J. W. Perry, K. Mansour, I. Y. S. Lee, X. L. Wu, P. V. Bedworth, C. T. Chen, D. Ng, S. R. Marder, P. Miles, T. Wada, M. Tian, and H. Sasabe, "Organic optical limiter with a strong nonlinear absorptive response," Science 273, 1533-1536 (1996). 4. G. S. He, L. X. Yuan, J. D. Bhawalkar, and P. N. Prasad, "Optical limiting, pulse reshaping, and stabilization with a nonlinear absorptive fiber system," Appl. Opt. 36, 3387-3392 (1997). 5. M. R. E. Lamont, M. Rochette, D. J. Moss, and B. J. Eggleton, "Two-photon absorption effects on selfphase-modulation-based 2R optical regeneration," IEEE Photon. Technol. Lett. 18, 1185-1187 (2006). 6. B. L. Justus, A. L. Huston, and A. J. Campillo, "Broad-band thermal optical limiter," Appl. Phys. Lett. 63, 1483-1485 (1993). 7. K. Mansour, M. J. Soileau, and E. W. Vanstryland, "Nonlinear optical-properties of carbon-black suspensions (ink)," J. Opt. Soc. Am. B-Opt. Phys. 9, 1100-1109 (1992). 8. X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, and W. Ji, "Broadband optical limiting with multiwalled carbon nanotubes," Appl. Phys. Lett. 73, 3632-3634 (1998). 9. P. A. Bouit, G. Wetzel, G. Berginc, B. Loiseaux, L. Toupet, P. Feneyrou, Y. Bretonniere, K. Kamada, O. Maury, and C. Andraud, "Near IR nonlinear absorbing chromophores with optical limiting properties at telecommunication wavelengths," Chem. Mater. 19, 5325-5335 (2007). 10. J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, "Broadband Nonlinear Optical Response of Graphene Dispersions," Adv. Mater. 21, 2430-2435 (2009). 11. H. L. Anderson, S. J. Martin, and D. D. C. Bradley, "Synthesis and 3rd-order nonlinear-optical properties of a conjugated porphyrin polymer," Angew. Chem.-Int. Ed. Engl. 33, 655-657 (1994). 12. F. C. Grozema, C. Houarner-Rassin, P. Prins, L. D. A. Siebbeles, and H. L. Anderson, "Supramolecular control of charge transport in molecular wires," J. Am. Chem. Soc. 129, 13370-+ (2007). 13. J. R. G. Thorne, S. M. Kuebler, R. G. Denning, I. M. Blake, P. N. Taylor, and H. L. Anderson, "Degenerate four-wave mixing studies of butadiyne-linked conjugated porphyrin oligomers," Chem. Phys. 248, 181-193 (1999). #115474 $15.00 USD Received 10 Aug 2009; revised 23 Sep 2009; accepted 24 Sep 2009; published 29 Sep 2009 (C) 2009 OSA 12 October 2009 / Vol. 17, No. 21 / OPTICS EXPRESS 18478 14. M. O. Senge, M. Fazekas, E. G. A. Notaras, W. J. Blau, M. Zawadzka, O. B. Locos, and E. M. N. Mhuircheartaigh, "Nonlinear optical properties of porphyrins," Adv. Mater. 19, 2737-2774 (2007). 15. M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, "Two-Photon Absorption and the Design of Two-Photon Dyes," Angew. Chem.-Int. Ed. 48, 3244-3266 (2009). 16. K. S. Kim, J. M. Lim, A. Osuka, and D. Kim, "Various strategies for highly-efficient two-photon absorption in porphyrin arrays," J. Photochem. Photobiol. C-Photochem. Rev. 9, 13-28 (2008). 17. M. Drobizhev, Y. Stepanenko, A. Rebane, C. J. Wilson, T. E. O. Screen, and H. L. Anderson, "Strong cooperative enhancement of two-photon absorption in double-strand conjugated porphyrin ladder arrays," J. Am. Chem. Soc. 128, 12432-12433 (2006). 18. T. V. Duncan, K. Susumu, L. E. Sinks, and M. J. Therien, "Exceptional near-infrared fluorescence quantum yields and excited-state absorptivity of highly conjugated porphyrin arrays," J. Am. Chem. Soc. 128, 90009001 (2006). 19. M. K. Kuimova, M. Hoffmann, M. U. Winters, M. Eng, M. Balaz, I. P. Clark, H. A. Collins, S. M. Tavender, C. J. Wilson, B. Albinsson, H. L. Anderson, A. W. Parker, and D. Phillips, "Determination of the triplet state energies of a series of conjugated porphyrin oligomers," Photochem. Photobiol. Sci. 6, 675-682 (2007). 20. T. E. O. Screen, J. R. G. Thorne, R. G. Denning, D. G. Bucknall, and H. L. Anderson, "Two methods for amplifying the optical nonlinearity of a conjugated porphyrin polymer: transmetallation and self-assembly," J. Mater. Chem. 13, 2796-2808 (2003). 21. J. W. Perry, K. Mansour, S. R. Marder, K. J. Perry, D. Alvarez, and I. Choong, "Enhanced reverse saturable absorption and optical limiting in heavy-atom-substituted phthalocyanines," Opt. Lett. 19, 625-627 (1994). 22. K. J. Thorley, J. M. Hales, H. L. Anderson, and J. W. Perry, "Porphyrin dimer carbocations with strong near infrared absorption and third-order optical nonlinearity," Angew. Chem.-Int. Ed. 47, 7095-7098 (2008). 23. R. L. Sutherland, M. C. Brant, J. Heinrichs, J. E. Rogers, J. E. Slagle, D. G. McLean, and P. A. Fleitz, "Excited-state characterization and effective three-photon absorption model of two-photon-induced excitedstate absorption in organic push-pull charge-transfer chromophores," J. Opt. Soc. Am. B-Opt. Phys. 22, 1939-1948 (2005). 24. T. V. Duncan, T. Ishizuka, and M. J. Therien, "Molecular engineering of intensely near-infrared absorbing excited states in highly conjugated oligo(porphinato)zinc-(polypyridyl)metal(II) supermolecules," J. Am. Chem. Soc. 129, 9691-9703 (2007). 25. R. Bonneau, I. Carmichael, and G. L. Hug, "Molar Absorption-Coefficients of Transient Species in Solution," Pure Appl. Chem. 63, 290-299 (1991). 26. A. Karotki, M. Drobizhev, M. Kruk, C. Spangler, E. Nickel, N. Mamardashvili, and A. Rebane, "Enhancement of two-photon absorption in tetrapyrrolic compounds," J. Opt. Soc. Am. B-Opt. Phys. 20, 321-332 (2003). 27. I. C. Khoo, M. V. Wood, M. Lee, and B. D. Guenther, "Nonlinear liquid-crystal fiber structures for passive optical limiting of short laser pulses," Opt. Lett. 21, 1625-1627 (1996). 28. J. J. Butler, S. R. Flom, J. S. Shirk, T. E. Taunay, B. M. Wright, and M. J. Wiggins, "Optical limiting properties of nonlinear multimode waveguide arrays," Opt. Express 17, 804-809 (2009). 29. J. J. Butler, J. J. Wathen, S. R. Flom, R. G. S. Pong, and J. S. Shirk, "Optical limiting properties of nonlinear multimode waveguides," Opt. Lett. 28, 1689-1691 (2003). 30. I. C. Khoo, A. Diaz, M. V. Wood, and P. H. Chen, "Passive optical limiting of picosecond-nanosecond laser pulses using highly nonlinear organic liquid cored fiber array," IEEE J. Sel. Top. Quantum Elec. 7, 760-768 (2001). 31. G. E. OKeefe, J. J. M. Halls, C. A. Walsh, G. J. Denton, R. H. Friend, and H. L. Anderson, "Ultrafast fieldinduced dissociation of excitons in a conjugated porphyrin polymer," Chem. Phys. Lett. 276, 78-83 (1997).
منابع مشابه
Influence of Interface Thermal Resistance on Relaxation Dynamics of Metal-Dielectric Nanocomposite Materials under Ultrafast Pulse Laser Excitation
Nanocomposite materials, including noble metal nanoparticles embedded in a dielectric host medium, are interesting because of their optical properties linked to surface plasmon resonance phenomena. For studding of nonlinear optical properties and/or energy transfer process, these materials may be excited by ultrashort pulse laser with a temporal width varying from some femtoseconds to some hund...
متن کاملThermodynamics Binding of Tetrakis (2,3,5,6-Tetrafluoro-N,N′,Nʺ-Trimethyl Ammonium Phenyl) Porphyrin Nickel(II) With Calf Thymus DNA
In this study, aggregation behavior of a water soluble cationic metalloporphyrin, meso-tetrakis (2,3,5,6-tetrafluoro-N,N´,N´´-trimethyl ammonium phenyl) porphyrin nickel(II) [Ni(II)(TF4TMAPP)]4+ is investigated in 5 mM aqueous phosphate buffer of pH 7.0 at 25.0 °C and various ionic strengths using optical absorption and resonance light scattering spectroscopic methods. The...
متن کاملTunable Broadband Nonlinear Optical Properties of Black Phosphorus Quantum Dots for Femtosecond Laser Pulses
Broadband nonlinear optical properties from 500 to 1550 nm of ultrasmall black phosphorus quantum dots (BPQDs) have been extensively investigated by using the open-aperture Z-scan technique. Our results show that BPQDs exhibit significant nonlinear absorption in the visible range, but saturable absorption in the near-infrared range under femtosecond excitation. The calculated nonlinear absorpti...
متن کاملFabrication, characterization and mode locking application of single-walled carbon nanotube/polymer composite saturable absorbers
We present the fabrication of a high optical quality single-walled carbon nanotubes (SWNTs) polyvinyl alcohol (PVA) composite film. The composites demonstrate strong saturable absorption at ∼1.5 μm, the spectral range for optical communications. By measuring the nonlinear transmission of a sub-picosecond pump pulse through the film, we were able to deduce a saturation fluence of ∼13.9 μJ/cm and...
متن کاملNonlinear Optical Absorption of Carbon Nanostructures Synthesized by Laser Ablation of Highly Oriented Pyrolytic Graphite in Organic Solvents
In this study, Highly Oriented Pyrolytic Graphite was ablated in various polar and nonpolar solvents by Q-switched neodymium: yttrium-aluminum-garnet laser (wavelength=1064 nm, frequency=2 kHz, pulse duration=240 ns). Then, the products were examined using Scanning Electron Microscopy and UV-Vis spectroscopy. The images showed that different carbon structures such as cauliflower-like structures...
متن کامل